Spontaneous quantum Hall states in chirally stacked few-layer graphene systems.
نویسندگان
چکیده
Chirally stacked N-layer graphene systems with N≥2 exhibit a variety of distinct broken symmetry states in which charge density contributions from different spins and valleys are spontaneously transferred between layers. We explain how these states are distinguished by their charge, spin, and valley Hall conductivities, by their orbital magnetizations, and by their edge state properties. We argue that valley Hall states have [N/2] edge channels per spin valley.
منابع مشابه
Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملQuantum anomalous Hall effect in single-layer and bilayer graphene
The quantum anomalous Hall effect can occur in singleand few-layer graphene systems that have both exchange fields and spin-orbit coupling. In this paper, we present a study of the quantum anomalous Hall effect in single-layer and gated bilayer graphene systems with Rashba spin-orbit coupling. We compute Berry curvatures at each valley point and find that for single-layer graphene the Hall cond...
متن کاملElectronic Structure of Multilayer Graphene 3
The recent explosion1), 2) of research on the electronic properties of single layer and stacked multilayer graphene sheets has been driven by advances in material preparation methods,3), 4) by the unusual5), 6), 7) electronic properties of these materials including unusual quantum Hall effects,8), 9) and by hopes that these elegantly tunable systems might be useful electronic materials. In this...
متن کاملInteraction driven quantum Hall effect in artificially stacked graphene bilayers
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificiall...
متن کاملBroken-Symmetry Quantum Hall States in Twisted Bilayer Graphene
Twisted bilayer graphene offers a unique bilayer two-dimensional-electron system where the layer separation is only in sub-nanometer scale. Unlike Bernal-stacked bilayer, the layer degree of freedom is disentangled from spin and valley, providing eight-fold degeneracy in the low energy states. We have investigated broken-symmetry quantum Hall (QH) states and their transitions due to the interpl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 15 شماره
صفحات -
تاریخ انتشار 2011